

PROJECTED AIR QUALITY MODELING EFFECTS AT NOAA'S WALKER BRANCH MONITORING TOWER

I. PROJECTED AIR QUALITY MODELING EFFECTS AT NOAA'S WALKER BRANCH MONITORING TOWER

1.0 BACKGROUND

National Oceanic and Atmospheric Administration (NOAA) has an ongoing research program within the Walker Branch Watershed investigating the ramifications of global climate change. As part of this research program, NOAA has been collecting information on CO₂ and heat flux across the forest canopy for approximately 5 years. This research program is expected to continue for many years.

DOE is proposing to construct and operate the Spallation Neutron Source (SNS), on the preferred location, Chestnut Ridge, that is approximately 1.5 km west of the NOAA research tower. The SNS will have mechanical draft cooling towers to dissipate excess heat and will use natural gas as a fuel for general space heating. This study is designed to provide a preliminary assessment of the potential impacts that the SNS may have in the quality of the data from the NOAA research tower. The overall study is designed to provide information on the impacts associated with water vapor in the cooling plume, and CO_2 and NO_x released from the combustion of natural gas.

2.0 AIR QUALITY MODEL

EPA's backbone air quality model, the Industrial Source Complex Short Term (ISCST3, version 97363) model, was chosen to assess the effects from the sources of concern at the SNS. The ISCST3 model is a complex, straight-line, steady-state Gaussian plume model that can be used to model a number of sources that might be present at a typical industrial facility.

The ISCST3 model accepts hourly meteorological data to define the conditions for plume rise, transport, diffusion, and deposition. Output from the model can take many forms; but, it generally consists of an echo of the input runstream, summary of all modeling inputs, and modeling results summarized in several requestable formats (U.S.E.P.A., 1995).

2.1 Model Input

Input to the ISCST3 model is of two basic types: (1) the input runstream file, and (2) the meteorological data file.

2.1.1 Input Runstream

This file contains the selected modeling options, as well as source location and parameter data, receptor locations, meteorological data file specifications, and output options.

For this "Phase I" study two groups of sources were modeled: (1) the cooling towers for water vapor emissions, and (2) a group of ten (4 MW scenario) small boiler stacks located on various SNS structures for CO_2 and NO_x emissions.

The 13 adjacent cooling towers (cells) present were modeled as a single combined source with an overall water vapor emission rate of 350 gallons/minute and other stack parameters as supplied by Conventional Facilities Team personnel. The 10 boiler stacks were modeled as discrete point sources. Stack diameters and heights were provided as indicated previously, while exit velocities and temperatures were based upon an average value taken from boiler manufacture literature. Existing boiler emission rates were taken from AP42 (U.S.E.P.A., 1995) and are summarized below:

Combustion Pro	ducts from Natural Gas-Fire	d Boilers at SNS
Combustion Products	Rate (lbs/mmcf) ¹	Rate (lbs/hr) ²
NO_x	100	3.48
CO_2	1.2E+05	4184

¹ Emission factors from EPA AP42 for commercial boilers (rating 0.3 to 10 mmBtu/hr)

Universal Traverse Mercator (UTM) coordinates, defining the location of each source in meters, were also provided to the model as well as source elevations. These locations along with source elevations were provided to the model. Input of source elevation data allows the model to perform intermediate and complex terrain calculations (via the incorporated COMPLEX I model). Complex terrain is defined as those receptor locations with elevations greater than a modeled stack top release elevation. For this study, only one receptor location was used (the NOAA monitoring tower location). This receptor also had a "flagpole" elevation (36 m) input that requests that the model provide concentrations 36 m from the ground elevation (where the instruments are located on the tower).

Building parameters were also input to the model to implement building downwash procedures. Other pertinent information input to the model included the use of "rural" wind profile exponents, vertical temperature gradients and mixing heights, and selection of the regulatory default option that sets a number of specific options to a selected default value.

2.1.2 Meteorological Data

Surface meteorological data supplied to the model consisted of one year (1991) of 15 minute averages for wind direction, mean wind speed, ambient temperature, solar radiation, and sigmatheta collected at NOAA's Walker Branch monitoring tower. Missing data were filled using data from additional nearby towers or by averaging surrounding period data for short missing periods. Solar radiation and sigma-theta are not used directly by the ISCST3 model but used (by the method indicated in Sect. 6.4.4.4. of U.S.E.P.A., 1987) to calculate stability category. This procedure was modified to reflect a surface roughness of 1.2 m and effective anemometer height of 9.1 m as suggested for the Walker Branch site by NOAA personnel.

² Based on cumulative output of 10 boilers at SNS with total heat load of 34,870,000 Btu/hr (0.0349 mmcf/hr).

A Fortran code was prepared to read these data, convert to the correct units when necessary, and write the values out to a new file in the correct format for ISCST3 use. Upper air data (mixing heights) were also taken from a preprocessed file of Knoxville/Nashville, TN 1991 surface/upper air data compiled from data downloaded from EPA's SCRAM bulletin board. Linear - interpolation was used to provide a mixing height for each 15-minute average from the 1-hour averages provided in the preprocessed file. All wind speeds less than 0.7 m/sec were considered a calm and set to zero (not processed by the model).

2.2 Model Output

Output from the ISCST3 model runs was somewhat different than normally expected in that the meteorological data utilized were 15-minute average data rather than 1-hour data. For this reason, while the model indicates 1 hour averages are output, the averages are actually 15-minute averages. The dates shown for the output concentrations are incorrect because they were being advanced by a factor of four. Additionally, since four times as much meteorological data are present as normal to an annual model run, four separate runs (each quarter year or approximately three months) were preformed to cover the entire year of Walker Branch, 15-minute data.

Actual model output consisted of 15-minute averages (in micrograms/cubic meter) of water vapor for the cooling tower and CO_2 and NO_x concentrations for the ten boiler stacks output at the monitoring tower location. The printed output consisted of a set of tables summarizing the maximum 50 concentrations for each of the modeled releases and two additional files listing the concentrations for every 15-minute period and every non-zero concentration, respectively. Approximately 80-85 percent of all projected concentrations at the tower are zeros (due mainly to wind direction not blowing from the sources toward the tower during that time).

ISCST3-projected maximums were 1.04 g/m³ for water vapor, 27,569 μ g/m³ for CO₂ and 23 μ g/m³ for NO_x. A copy of the ISCST3 output for the third quarter modeled is included in this appendix.

One important factor in considering the concentrations obtained is that these are conservative, probably worst-case, projections. The emission rates assume continuous, annual operation of all sources at full-rated capacity. The 350 gal/min emission rate for the cooling towers is for "droplet and vapor drag out." For modeling purposes, the assumption was made that this water is all vapor or aerosol. In reality, some larger droplets may be present and more may form as the plume travels downwind. These particles may condense or drop out before ever reaching the monitoring tower. The extent of this phenomena would probably be highly dependent upon local ambient meteorological conditions at any given time.

3.0 REFERENCES

- U.S.E.P.A. 1995. Compilation *of Air Pollution Emission Factors*, 5th Edition. AP-42. OAQPS. Research Triangle Park, North Carolina.
- U.S.E.P.A. 1987. On-Site Meteorological Program Guidance for Regulatory Modeling Applications. OAQPS. Research Triangle Park, North Carolina.
- U.S.E.P.A. 1995. *User's Guide for the Industrial Source Complex Dispersion Models*. OAQPS. Research Triangle Park, North Carolina.

DS

WB MET		SZ	1040.0	1039.5	1054.0	1088.0	1041.0	1038.5	1050.0	1050.0	1038.5	1088.0	1041.0	VS SZINIT
JUL-SEP		YS	3981595.	3981537.	3981701.	3981795.	3981865.	3981965.	3981635.	3981717.	3982073.	3981977.	3982027.	TS SYINIT XINIT
MON. TOWER*4MW*1991 RAL n per met data		×	743267.	742933.	743170.	743471.	743552.	743645.	743239.	743347.	743567.	743339.	743447.	H H S
*	SO STARTING SO ELEVUNIT FEET	*** Source Location Cards: ***	SO LOCATION CT1 POINT *** COOLING TOWER	(±)	SO LOCATION S2C POINT		LOCATION S4C	LOCATION S5C	CATION	UTILITY		*** TARGET BLDG. SO LOCATION S9C POINT	CATION S10C	Source Parame POINT: SRCI VOLUME: SRCI AREA: SRCI

4.8800	90	.3048	.4064	.2540	.4064	.3048	.2040	.4064	.4064	.2540																																					
9.8000	۲.	•	∹:	7.1800	Ξ.	Τ.	Τ.	. 180	.180	•	7.52	7.52	7.52	7.52	7.52	7.52	20.43	90.43	۰.	4	90.43	٥.	10.52	10.52	10.52	10.52	10.52	10.52	26.32	34 11	40.00	26.48	34.11	40.00	6.10	•	6 10	0.10	0.10	6.10 6.10	6.10	70.76	481.76	447.00	70.76	81	447.00
80	0000	0000	0000	0000	0000	0000	0000	480.0000	480.0000	0000.	7.52	7.52	7.52	7.52	7.52	_	\sim	4	94.30	$^{\circ}$	84.08	4	10.52	.5		. 20		. 10	۶ ک				4	2	6.10	9	01.9	0.10	0.10	6.10	9	വ	40	486.05	2	40	486.05
304.80	480	480	4	4	4	4			480	480	.5	.5	.5	.5	7.52	ς.	∹ '	∹.	7	Ξ.	Ξ.	۲.	10.52	. 5	10.52	. 10		. ע		1 4	ی د		. 6	7	6.10		•			•			385.52	510.34			510.34
7.52 KS	13.	9.1400	8.5300	14.9300	20.4200	7.9200	11.5800	20.4200	8.5300	14.930	7.52	7.52	7.52	7.52	7.52	_	₹.		98.21		~	98.21	10.52	10.52	10.52	10.52	10.52	10.52	35.02	11.00	20.00	35.14	30.00	34.14	6.10	10	0.10	0.10	6.10	6.10	യ	255.11	on	519.11	5.1	9.0	519.11
ER STACKS		00	00	00	00	00	00	00	00	00		•	•		7.52	7.52	67.64	50.87	96.16			96.76	10.52	10.52	10.52	10.52	10.52	10.32	37.02	26.10	27.62	77 93	29.72	32.43	6.10	! -		•	6.10		6.10	329.75	242.78	519.89	329.75	242.78	519.89
22015. FROM 10 BOILER		43.1500	55.2300	28.2900	102.7300	37.420	19.6600	•	55.2300	28.2900	7.52	7.52	7.52	7.52	7.52	7.52	79.02	36.20	94.02	79.02	36.20	94.02	10.52	•		10.52	10.52	10.32	30.32	70.60	33 70	73.05	28.53	33.79	6.10	01.0	0.10	07.9	01.9	6.10	6.10	394.37	159.19	508.55	394.37	159.19	508.55
		S2C	33 C	S4C	25c	39S	S7C	S8C	268	S10C	CT1	CT1	CT1	CT1	CT1	CT1	CT1	CI1	CT1	CT1	CT1	CT1	210	210	210	210	210	01C	ייני טוני	51C	210	31C 81C	210	SIC	200) (320	S2C	SZC	SSC	S2C	SZC	22C	S2C	S2C	S2C	S2C
SRCPARAM CT1	S	SRCPARAM	SRCPARAM			SRCPARAM	SRCPARAM	SRCPARAM	SRCPARAM	SRCPARAM	BUILDHGT		BUILDHGT	BUILDHGT							BUILDWID	BUILDWID	BIITI,DHGT								BUILDWID	-			RITT.DHGT						BUILDHGT		BUILDWID		BUILDWID		BUILDWID
80 *	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	80	SO	SO	SO	SO	SO	ď	2 0	2 6	0 0	2 6	2 0	200	OS C	S C	200	מ מ	So	C		200	SO	20	SO	SO	SO	SO	SO	SO	SO	SO

9 5.49 5	9 5.49 5.4	9 5.49 5.4	9 5.49 5.4	9 5.49 5.4	5 26.25 29.3	2 33.57 31.3	4 31.80 33.0	5 26.25 29.3	2 33.57 31.	4 31.80 33.0		5.49	5.49 5.4	5.49 17	17.37 17.3	5.49 5.4	5.49 17.3	10.95 10.6	24.86 25.6	23.52 118.0	6 73.55 67.40	24.86 25.6	23.52 118	17.37 17.3	17.37 17.3	17.3	17.37 17.3	17.37 17.3	17.37 17.3	73.55 67.4	120.90 121	72 55 67 4	120 90 121 4	1 116.73 118.00	,	4.88 4.8	4.88 4.	4.88 4.8	8 4.88 4.88	4.88 4.8	
5. 7.	. v	5	δ.	3	27.	34.	29.	27.	34.	29.		٠	٠	5.		•	5.	4.	щ	ж Э	88.4	Э.	ж Э	7.	7.	17.3	۲.	۲.	- ,	. aa	٠,	. 17	. 4	111.9		•	•	•	4.8	٠	
5.49	. 4.	4.	4.	5.4	0.5	5.0	6.5	.5	5.0	6.5		7	4	5.4	٣.	4.	7.	9.0	1.0	23.4	100.69	1.0	3.4	7.3	7.3	7.3	7.3	7.3	17.3	900.6	0.60	0.4 0.4		104.84		8	8	8	4.88	8	٩
5.49	. 4.	4.	4.	5.4	2.3	4.1	4.2	Ę,	4.1	4.2	,	ς.	7.	4.	٣.	4.	4.	9.8	8.0	24.9	109.86	8.0	4.9	7.3	7.3	7.3	7.3	7.3	17.3	9.6	97.9	4 0	0.40	111.43		80	æ	æ	4.88	æ	
5.49	. 4.	4.	4.	4.	3.1	2.2	8.1	٦.	2.2	8.1	ī	Υ.	7.3	4.	ъ.	7.3	4.	5.6	3.9	5.7		3.9	5.7	7.3	7.3	7.3	7.3	7.3	17.3	5.6	83.9	2	0.01	118.21		8	8	8	4.88	8	
33C	33C	S3C	S3C	S3C	S3C	S3C	S3C	S3C	S3C	S3C		4	4	S4C	4	S4C	S4C	4	4	4		S4C	S4C	SSC	SSC	Š	Š	SEC	Ō	Š	ויתו	SSC	ก็	ssc ssc		36C	29S	39S	36C	29S)
SO BUILDHGT		_	BU	SO BUILDHGT	SO BUILDWID	SO BUILDWID	SO BUILDWID	SO BUILDWID	BUI	SO BUILDWID		BO	SO BUILDHGT			-	SO BUILDHGT	BUI			BU	O BU	SO BUILDWID	SO BUILDHGT	SO BUILDHGT					SO BUILDWID	BUILDW	BUILDW	SO BUILDWID	SO BUILDWID		SO BUILDHGT		-	SO BUILDHGT		

53.11 50.00 23.11 53.11 50.00	8.53 8.53 8.53 8.53 8.53 8.53 52.69 52.69 60.00	17.37 17.37 17.37 17.37 17.37 17.37 68.80 68.80 68.80 114.80		17.37
51.61 51.32 22.95 51.61 51.32	8.53 8.53 8.53 8.53 8.53 8.53 8.53 57.58 85.42 85.42 85.42 85.42 85.42	17.37 17.37 17.37 17.37 17.37 17.37 69.20 69.20 69.20 115.34 115.45		17.37
48.54 51.09 30.59 48.54 51.09	8.53 8.53 8.53 8.53 8.53 8.53 60.71 60.71 60.71 60.71	17.37 17.37 17.37 17.37 17.37 17.37 84.36 111.38 111.38 111.38	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	17.37
44.00 49.30 37.30 44.00	8.53 8.53 8.53 8.53 8.53 8.53 8.54 62.00 62.00 62.00	17.37 17.37 17.37 17.37 17.37 17.37 103.96 96.96 96.96 96.96 103.96	44444000000	17.37 5.49
38.12 51.26 42.88 38.12 51.26	8.53 8.53 8.53 8.53 8.53 8.53 8.53 61.41 61.42 61.42 61.42 61.42 61.42 61.42 61.42	17.37 17.37 17.37 17.37 17.37 106.61 96.40 103.37	4444400000	17.37 5.49
31.09 52.99 47.16 31.09 52.99	8.53 8.53 8.53 8.53 8.53 8.53 5.1.21 5.1.21 5.1.21 5.1.21 5.1.21	17.37 17.37 17.37 17.37 17.37 113.02 83.87 113.02 83.87	44444KH0WH0 4	3.49 17.37 5.49
BUILDWID S6C BUILDWID S6C BUILDWID S6C BUILDWID S6C BUILDWID S6C	BUILDHGT S7C BUILDWID S7C BUILDWID S7C BUILDWID S7C BUILDWID S7C	BUILDHGT S8C BUILDHGT S8C BUILDHGT S8C BUILDHGT S8C BUILDHGT S8C BUILDHID S8C BUILDWID S8C BUILDWID S8C BUILDWID S8C BUILDWID S8C BUILDWID S8C		BUILDHGT SIUC BUILDHGT SIUC BUILDHGT SIUC
SO E				SO E

17.37 17.37 5.49 68.80 114.80 22.00 68.80 114.80						
17.37 17.37 5.49 69.20 115.34 22.53 69.20 115.34						
17.37 17.37 5.49 84.36 112.38 22.38 84.36 112.38		(calm) 10.80			(s)	
5.49 17.37 5.49 16.55 106.00 22.95 16.55 106.00	36.0	zero TN TN 8.23		Setup ***	Error Message(s) ng Message(s) national Message(s)	* * *
5.49 17.37 5.49 18.96 96.40 22.94 18.96 96.40	. 1120.	set equal OR NA NA	MUS		Fatal Error Messag Warning Message(s) Informational Mess	SES ******
5.49 17.37 5.49 20.80 83.87 23.55 20.80 83.87	rri sic-sioc 2. 3982825	m/sec ETERS 91 3.09	: 50 .1 WB12CT.SUM .1 WB12CO2.SUM	y For ISC3 Model of Total Messages	0 Fatal 1 Warnir 0 Inforn	ERROR MESSAGES NONE ***
\$100 \$100 \$100 \$100 \$100 \$100 \$100 \$100	CT CT1 CO2 S1 FEET 744522.	ING windspeeds <.7 FIL ORNAB.ASC ICHT 9.100 M AATA 13891 19 AATA 13897 19 ATS 1.54	ALLAVE 1 CT . 1 CO2 .	Summar ummary		FATAL E
BUILDHGT BUILDHGT BUILDHGT BUILDHGT BUILDMID BUILDMID BUILDMID BUILDMID	SRCGROUP SRCGROUP FINISHED STARTING ELEVUNIT DISCCART	STAR1 all INPUT ANEMI SURFI VAINDC	STARTING MAXTABLE MAXIFILE MAXIFILE FINISHED	** Message	Total of Total of Total of	* * * * * * * * *
80 80 80 80 80 80 80 80	SSO SOO SOO SEE SEE SOO SEE SEE SOO SEE SEE	M * M M M * M M M M M M M M M M M M M M	00 00 00	*	A A A T	

*** ISCST3 - VERSION 97363 ***	*** 06/15/98 *** 19:41:09	60:
**MODELOPTS: CONC	PAGE	-
*** MODEL SETUP OPTIONS SUMMARY ***	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•
**Intermediate Terrain Processing is Selected		
**Model Is Setup For Calculation of Average CONCentration Values.		
SCAVENGING/DEPOSITION LOGIC **Model Uses NO DRY DEPLETION. DDPLETE = F **Model Uses NO WET DEPLETION. WDPLETE = F **NO WET SCAVENGING Data Provided. **Model Does NOT Use GRIDDED TERRAIN Data for Depletion Calculations		
**Model Uses RURAL Dispersion.		
**Model Uses Regulatory DEFAULT Options: 1. Final Plume Rise. 2. Stack-tip Downwash. 3. Buoyancy-induced Dispersion. 4. Use Calms Processing Routine. 5. Not Use Missing Data Processing Routine. 6. Default Wind Profile Exponents. 7. Default Vertical Potential Temperature Gradients. 8. "Upper Bound" Values for Supersquat Buildings. 9. No Exponential Decay for RURAL Mode		
**Model Accepts Receptors on ELEV Terrain.		
**Model Accepts FLAGPOLE Receptor Heights.		
**Model Calculates 1 Short Term Average(s) of: 1-HR		
**This Run Includes: 11 Source(s); 2 Source Group(s); and 1 Receptor(s)		
**The Model Assumes A Pollutant Type of: OTHER		
**Model Set To Continue RUNning After the Setup Testing.		
**Output Options Selected: Model Outputs Tables of Overall Maximum Short Term Values (MAXTABLE Keyword) Model Outputs External File(s) of Threshold Violations (MAXIFILE Keyword)		
**NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours m for Missing Hours b for Both Calm and Missing Hours		

Factor = 0.10000E+07	
Rot. Angle = 0.0 Emission Rate Unit Factor =	**Output Print File: wb12.out
	utput B
0.0000	0** :
II	
Coef.	
Decay (
<pre>Anem. Hgt. (m) = 9.10; Decay Coef. = 0.0000 Emission Units = GRAMS/SEC Output Units = MICROGRAMS/M**3</pre>	
s = = = = = = = = = = = = = = = = = = =	αu
Anem. Hgt. (m) = Emission Units = Output Units =	,12.i
. Hgt sion ut Ur	 W
Anem Emis: Outp	m Filt
**Misc. Inputs: Anem. Hgt. (m) = Emission Units = Output Units =	** rrant binetream File: wb12.inp
**Misc.	**

**Input Runstream File: wb12.inp **Detailed Error/Message File: ERRORS.OUT

6/9	PAGE		RATE /ARY 											
* * *			BUILDING EMISSION RATE EXISTS SCALAR VARY BY											
			BUILDING EXISTS	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
мет			STACK DIAMETER (METERS)	4.88	0.41	0.30	0.41	0.25	0.41	0.30	0.20	0.41	0.41	0.25
CT & 10 STACKS @ MON. TOWER*4MW*1991 JUL-SEP WB MET			STACK EXIT VEL. (M/SEC)	9.80	7.18	7.18	7.18	7.18	7.18	7.18	7.18	7.18	7.18	7.18
W*1991 JI		* * *	STACK TEMP. (DEG.K)	304.80	480.00	480.00	480.00	480.00	480.00	480.00	480.00	480.00	480.00	480.00
TOWER*4M	FLGPOL DFAULT	OURCE DAT	STACK HEIGHT (METERS)	7.52	13.56	9.14	8.53	14.93	20.42	7.92	11.58	20.42	8.53	14.93
KS @ MON.		*** POINT SOURCE DATA ***	BASE ELEV. (METERS)	317.0	316.8	321.3	331.6	317.3	316.5	320.0	320.0	316.5	331.6	317.3
k 10 STACI	RURAL ELEV	*	Y ERS) (METERS)	3981595.0	3981537.0	3981701.0	3981795.0	3981865.0	3981965.0	3981635.0	3981717.0	3982073.0	3981977.0	3982027.0
*** CT	R		X (METERS)	743267.0	742933.0	743170.0	743471.0	743552.0	743645.0	743239.0	743347.0	743567.0	743339.0	743447.0 3
*** ISCST3 - VERSION 97363 ***			NUMBER EMISSION RATE PART. (GRAMS/SEC) CATS.	0.22015E+05										
- VERSIC	CONC		NUMBER PART. CATS.	0	0	0	0	0	0	0	0	0	0	0
*** ISCST3	**MODELOPTs: CONC		SOURCE	CT1	· \$1C	\$2C	S3C	S4C	S5C	29C	S7C	SBC	S9C	S10C

*** ISCST3 - VERSION 97363 ***	ERSION 97363 *	* *	بديد	STACKS @	MON. TOWER*	.4MW*1991	CT & 10 STACKS @ MON. TOWER*4MW*1991 JUL-SEP WB MET	MET		* * * * *	06/15/98 19:41:09 PAGE 3
MODELOPIS: CONC	NC		RURAL * SC	ELEV 1	URAL ELEV FLGPOL DFAULT *** SOURCE IDS DEFINING SOURCE GROUPS ***	T OURCE GRO	UPS ***				
GROUP ID					SOURCE IDS						
CT CT1											
C02 · S1C	, S2C	, s3c	, s4c	, 850	298'	, S7C	, S8C	268'	, S10C	•	

06/15/98 19:41:09 PAGE 4	BH BW WAK 7.5, 20.4, 0 7.5, 90.4, 0 7.5, 88.0, 0 7.5, 20.4, 0 7.5, 90.4, 0 7.5, 88.0, 0	BH BW WAK 10.5, 26.5, 0 10.5, 34.1, 0 10.5, 40.0, 0 10.5, 34.1, 0 10.5, 40.0, 0	BH BW WAK 6.1, 70.8, 0 6.1, 481.8, 0 6.1, 447.0, 0 6.1, 70.8, 0 6.1, 481.8, 0 6.1, 447.0, 0	BH BW WAK 5.5, 29.3, 0 5.5, 31.3, 0 5.5, 33.0, 0 5.5, 29.3, 0 5.5, 31.3, 0 5.5, 31.3, 0
* * * * * *	WAK IFV 9, 0 6 1, 0 12 3, 0 18 9, 0 24 1, 0 36	MAK IFV 0 6 0 12 0 18 0 24 0 36	WAK IFV 1, 0 6 3, 0 12 5, 0 18 1, 0 24 3, 0 36	MAK IFV 3, 0 6 5, 0 12 3, 0 18 3, 0 24 5, 0 30
	BH BW 7.5, 22.9, 7.5, 84.1, 7.5, 22.9, 7.5, 22.9, 7.5, 84.1, 7.5, 84.1, 7.5, 94.3,	BH BW 10.5, 26.5, 10.5, 33.4, 10.5, 26.5, 10.5, 26.5, 10.5, 33.4, 10.5, 33.4, 10.5, 39.2,	BH BW 16.1, 6.1, 440.3, 6.1, 486.0, 6.1, 485.1, 6.1, 440.3, 6.1, 440.3, 6.1, 486.0,	BH BW 5.5, 26.3, 5.5, 33.6, 5.5, 31.8, 5.5, 26.3, 5.5, 26.3, 5.5, 26.3, 5.5, 33.6, 5.5, 31.8,
MET.	K IFV 5 111 17 23 29 35	K IFV 511 111 111 233 233 355	K IFV 511 11 17 23 29 35	K IFV 5 11 17 23 29 35
UL-SEP WB	BW WAK 39.1, 0 75.2, 0 97.7, 0 39.1, 0 75.2, 0	BW WAK 31.3, 0 31.7, 0 37.3, 0 31.3, 0 31.7, 0 37.3, 0	BW WAK 172.7, 0 385.5, 0 510.3, 0 172.7, 0 385.5, 0	BW WAK 27.8, 0 34.8, 0 29.6, 0 27.8, 0 34.8, 0
*1991 J	BH 7.5, 7.5, 7.5, 7.5, 7.5,	BH 10.5, 10.5, 10.5, 10.5, 10.5,	BH 6.1, 6.1, 6.1, 6.1,	BH 6.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
ER*4MW AULT BUILDI	K IFV 4 10 16 22 28 28 34	16 16V 16V 10 10 22 28 34	K IFV 4 10 16 22 22 28 34	K IFV 4 10 16 22 22 28 34
@ MON. TOWER*4MW*1991 JUL-SEP FLGPOL DFAULT SPECIFIC BUILDING DIMENSIONS	BW WAK 54.2, 0 64.0, 0 98.2, 0 54.2, 0 64.0, 0	BW WAK 35.1, 0 30.0, 0 34.1, 0 35.1, 0 35.1, 0	BW WAK 255.1, 0 319.0, 0 519.1, 0 255.1, 0 319.0, 0	BW WAK 30.6, 0 35.0, 0 26.6, 0 30.6, 0 25.0, 0
0 STACKS @ L ELEV DIRECTION	BH 7.5, 7.5, 7.5, 7.5,	BH 10.5, 10.5, 10.5, 10.5, 10.5,	BH 6.1, 6.1, 6.1, 6.1, 6.1,	## w w w w w w w w w w w w w w w w w w
& 10 S RURAL *** DIR	15V 3 9 15 21 27 27	(IFV 3 9 15 21 21 27 23 33	1 IFV 3 9 15 21 27 27 33	1 IFV 3 9 15 21 27 23 33
*** CT ***	BW WAK 67.6, 0 50.9, 0 96.8, 0 67.6, 0 50.9, 0	BW WAK 37.9, 0 29.7, 0 32.4, 0 37.9, 0 33.4, 0	BW WAK 329.8, 0 242.8, 0 519.9, 0 329.8, 0 242.8, 0	BW WAK 32.4, 0 34.1, 0 24.2, 0 32.4, 0 34.1, 0
* * *	BH 7.5, 7.5, 7.5, 7.5,	BH 10.5, 10.5, 10.5, 10.5,	BH 6.1, 6.1, 6.1, 6.1,	BH 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.
97363	1FV 2 8 14 20 26 32	1FV 2 8 14 20 20 26 32	1FV 2 8 14 20 26 32	1FV 2 8 114 20 26 32
*** ISCST3 - VERSION 97363 *MODELOPTs: CONC	CT1 BW WAK 79.0, 0 36.2, 0 94.0, 0 79.0, 0 36.2, 0	S1C BW WAK 39.6, 0 28.5, 0 33.8, 0 39.6, 0 28.5, 0	S2C BW WAK 394.4, 0 159.2, 0 508.5, 0 394.4, 0 159.2, 0	S3C BW WAK 33.2, 0 32.2, 0 28.1, 0 33.2, 0 32.2, 0
*** ISCST3 **MODELOPTS	SOURCE ID: IEV BH 7.5, 7.5, 13 7.5, 19 7.5, 25 7.5, 31 7.5,	SOURCE ID: IFV BH 1 10.5, 7 10.5, 13 10.5, 19 10.5, 25 10.5, 31 10.5,	SOURCE ID: IFV BH 1 6.1, 7 6.1, 13 6.1, 19 6.1, 25 6.1, 31 6.1,	SOURCE ID: 1 1 5.5, 7 5.5, 13 5.5, 19 5.5, 25 5.5, 31 5.5,

	WARK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WAK 0 0 0 0	WAK 0 0 0 0	WAK 0 0 0 0
06/15/98 19:41:09 PAGE 5	BW 10.7, 25.7, 118.0, 67.4, 25.7, 118.0,	BW 67.4, 121.4, 118.0, 67.4, 121.4, 118.0,	BW 23.1, 53.1, 50.0, 23.1, 53.1, 50.0,	BW 55.5, 52.7, 46.0, 55.5,
06/1. 19:4 PAGE	BH 5.5, 5.5, 17.4, 17.4, 17.4,	BH 17.4, 17.4, 17.4, 17.4, 17.4,	HH 0.44 0.0.4 0.0.4	BH 8.5, 8.5, 8.5, 8.5,
* * * *	1FV 6 12 18 24 30	1FV 6 12 18 24 30	1FV 6 12 18 24 30	1FV 6 12 18 24 30
* *	BW WAK 10.9, 0 24.9, 0 23.5, 0 73.6, 0 24.9, 0	BW WAK 73.6, 0 120.9, 0 116.7, 0 73.6, 0 120.9, 0	BW WAK 22.9, 0 51.6, 0 22.9, 0 51.6, 0	BW WAK 55.6, 0 57.6, 0 55.6, 0 55.6, 0
	BH 5.5, 5.5, 5.5, 17.4, 5.5,	BH 17.4, 17.4, 17.4, 17.4, 17.4,	BH 4.9, 4.9, 4.9, 4.9,	BH 8.5, 8.5, 8.5, 8.5,
MET	1 FV 5 11 17 23 23 35	1EV 11 17 23 29 35	1FV 5 11 17 23 29 35	1FV 5 11 17 23 29 35
W *	BW WAK 14.4, 0 23.3, 0 23.3, 0 88.5, 0 23.3, 0	BW WAK 88.5, 0 1116.7, 0 111.9, 0 88.5, 0 116.7, 0	BW WAK 30.6, 0 48.5, 0 51.1, 0 30.6, 0 48.5, 0	BW WAK 57.1, 0 60.7, 0 45.5, 0 57.1, 0 60.7, 0
1991 JU	BH 5.5, 5.5, 5.5, 17.4, 5.5,	BH 17.4, 17.4, 17.4, 17.4, 17.4,	HB 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BH 8.5, 8.5, 8.5, 8.5,
TOWER*4MW*1991, DFAULT	1FV 10 16 22 28 34	1 FV 1 0 1 6 2 2 2 8 3 4	1FV 4 10 16 22 28 34	IFV 4 10 16 22 28 34
MON. TOWER*4MW*1991 JUL-SEP FLGPOL DFAULT SPECIFIC BUILDING DIMENSIONS	BW WAK 100.7, 0 23.0, 0 23.5, 0 100.7, 0 21.0, 0	BW WAK 100.7, 0 109.0, 0 104.8, 0 100.7, 0 109.0, 0	BW WAK 37.3, 0 44.0, 0 49.3, 0 37.3, 0 44.0, 0	BW WAK 56.8, 0 62.0, 0 44.1, 0 56.8, 0 62.0, 0
	BH 17.4, 5.5, 5.5, 17.4, 5.5,	BH 17.4, 17.4, 17.4, 17.4, 17.4,	BH 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BH 8.5, 8.5, 8.5, 8.5,
& 10 STACKS (RURAL ELEV	1FV 3 9 15 21 27 33	1FV 3 9 15 21 27 33	1FV 3 9 15 21 27 33	1FV 3 9 15 21 27
* * * CT & * * * * * * * * * * * * * * * * * *	BW WAK 109.9, 0 18.1, 0 25.0, 0 109.9, 0 18.1, 0 25.0, 0	BW WAK 109.9, 0 98.0, 0 111.4, 0 109.9, 0 98.0, 0	BW WAK 42.9, 0 38.1, 0 51.3, 0 42.9, 0 38.1, 0	BW WAK 54.8, 0 61.4, 0 41.4, 0 54.8, 0 61.4, 0
* *	BH 17.4, 5.5, 5.5, 17.4, 5.5,	BH 17.4, 17.4, 17.4, 17.4, 17.4,	HB 4 4 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9	BH 8.5, 8.5, 8.5,
97363	1FV 2 8 14 20 26 32	1FV 2 8 14 20 26 32	1FV 2 8 14 20 26 32	1FV 2 8 14 20 26 32
3 - VERSION 97363	S4C BW WAK 115.7, 0 84.0, 0 25.7, 0 115.7, 0 84.0, 0 25.7, 0	SSC BW WAK 115.7, 0 84.0, 0 118.2, 0 115.7, 0 84.0, 0	S6C BW WAK 47.2, 0 31.1, 0 53.0, 0 47.2, 0 31.1, 0	S7C BW WAK 51.2, 0 58.9, 0 46.3, 0 51.2, 0 58.9, 0
*** ISCST3 **MODELOPTS	SOURCE ID: IFV BH 1 17.4, 7 17.4, 13 5.5, 19 17.4, 25 17.4, 31 5.5,	SOURCE ID: 1 17.4, 7 17.4, 13 17.4, 19 17.4, 25 17.4, 31 17.4,	SOURCE ID: IFV BH 1 4.9, 7 4.9, 13 4.9, 19 4.9, 25 4.9, 31 4.9,	SOURCE ID: IFV BH 1 8.5, 7 8.5, 13 8.5, 19 8.5, 25 8.5, 31 8.5,

06/15/98 19:41:09 PAGE 6	BH BW WAK 17.4, 68.8, 0 17.4, 114.8, 0 17.4, 116.0, 0 17.4, 68.8, 0 17.4, 114.8, 0 17.4, 116.0, 0	BH BW WAK 5.5, 26.3, 0 5.5, 34.3, 0 5.5, 34.0, 0 5.5, 26.3, 0 5.5, 34.0, 0	BH BW WAK 17.4, 68.8, 0 17.4, 114.8, 0 5.5, 22.0, 0 17.4, 68.8, 0 17.4, 114.8, 0 5.5, 22.0, 0
* * * * * *	WAK IFV 6 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	WAK IFV 0 6 0 12 0 18 0 24 0 36	1FV 6 12 18 24 30
	BW 69.2, 115.3, 115.5, 115.5, 115.3,	BW 25.7, 35.6, 32.6, 25.7, 35.6,	BW WAK 69.2, 0 115.3, 0 22.5, 0 69.2, 0 1115.3, 0 22.5, 0
	IFV BH 5 17.4, 11 17.4, 17 17.4, 23 17.4, 29 17.4, 35 17.4,	11 5.5, 11 5.5, 23 5.5, 23 5.5, 35 5.5, 35	1FV BH 17.4, 11 17.4, 17 5.5, 23 17.4, 35 5.5, 35 5.5, 35 5.5, 35 5.5, 35 5.5,
STACKS @ MON. TOWER*4MW*1991 JUL-SEP WB METELEV FLGPOL DFAULT RECTION SPECIFIC BUILDING DIMENSIONS ***	BW WAK I 84.4, 0 112.4, 0 111.4, 0 84.4, 0 112.4, 0	BW WAK I 29.3, 0 35.9, 0 30.2, 0 29.3, 0 35.9, 0	BW WAK I 84.4, 0 112.4, 0 22.4, 0 84.4, 0 112.4, 0
£ 10 STACKS @ MON. TOWER*4MW*1991 JUL-SEPRURAL ELEV FLGPOL DFAULT*** DIRECTION SPECIFIC BUILDING DIMENSIONS	BH 17.4, 17.4, 17.4, 17.4, 17.4, 17.4,	BH 5.5.5. 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	BH 17.4, 17.4, 5.5, 17.4, 17.4,
MON. TOWER*4MN FLGPOL DFAULT SPECIFIC BUILD]	WAK IFV 0 4 0 10 0 16 0 22 0 28 0 34	WAK IFV 0 4 0 10 0 16 0 22 0 28 0 34	WAK IFV 0 4 0 10 0 16 0 22 0 28
@ MON. '	BW 1, 97.0, 1, 106.0, 1, 106.0, 1, 106.0, 1, 104.0, 104.0,	BW 31.9, 35.0, 26.9, 31.9, 35.0,	BW 16.5, 106.0, 22.9, 106.0, 22.9
) STACKS ; ELEV)IRECTION	JEV BH 3 17.4, 9 17.4, 15 17.4, 27 17.4, 33 17.4,	1EV BH 3 5.5, 9 5.5, 15 5.5, 21 5.5, 27 5.5, 33 5.5,	IFV BH 3 5.5, 9 17.4, 15 5.5, 21 5.5, 27 17.4, 33 5.5,
*** CT & 10 *** RURAL *** D1	BW WAK 1 106.6, 0 96.4, 0 103.4, 0 106.6, 0 96.4, 0	BW WAK I 33.7, 0 33.1, 0 28.6, 0 33.7, 0 33.1, 0	BW WAK I 19.0, 0 96.4, 0 22.9, 0 19.0, 0 96.4, 0
* * * *	BH 17.4, 17.4, 17.4, 17.4, 17.4, 17.4,	## 	BH 5.5, 17.4, 5.5, 5.5, 17.4,
9736 NC	WAK IFV 0 2 0 8 0 14 0 20 0 26 0 32	AK IFV 2 8 8 14 14 20 26 32 6	14 17 2 2 0 2 6 2 6 3 2 5 3 2 3 2 6
3 - VERSI	3.0, 3.0, 3.0, 3.0, 3.0,	S9C BW WAK 34.3, 0 30.1, 0 31.9, 0 34.3, 0 30.1, 0 31.9, 0	S10C BW WAK 20.8, 0 83.9, 0 23.5, 0 20.8, 0 83.9, 0
*** ISCST3 - VERSION 97363 *** **MODELOPTs: CONC	ID: BH 17.4, 17.4, 17.4, 17.4, 17.4, 17.4,	SOURCE ID: IFV BH 1 5.5, 7 5.5, 13 5.5, 19 5.5, 25 5.5,	SOURCE ID: IFV BH 1 5.5, 7 17.4, 13 5.5, 19 5.5, 25 17.4, 31 5.5,

06/15/98 19:41:09	PAGE 7		
* * *			
*** CT & 10 STACKS @ MON. TOWER*4MW*1991 JUL-SEP WB MET ***	RURAL ELEV FLGPOL DFAULT	*** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZFLAG) (METERS)	341.4, 36.0);
*** ISCST3 - VERSION 97363 ***	**MODELOPTs: CONC		(744522.0, 3982825.0, 34

06/15/98 19:41:09 PAGE 8									
* *			THE DATA FILE.				6 .70000E-01 .70000E-01 .10000E+00 .15000E+00 .35000E+00		6 .00000E+00 .00000E+00 .00000E+00 .20000E+01 .35000E-01
MET	SING ***		AL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE	EGORIES ***			\$.70000E-01 .70000E-01 .10000E+00 .15000E+00 .35000E+00	* *	5 .00000E+00 .00000E+00 .00000E+00 .20000E-01 .35000E-01
TOWER*4MW*1991 JUL-SEP WB MET	CTED FOR PROCESSING =NO)		DEPEND ON WHAT	WIND SPEED CATEGORIES	8.23, 10.80,	NENTS ***	4 .70000E-01 .70000E-01 .10000E+00 .15000E+00 .35000E+00	FURE GRADIENTS METER)	4 .00000E+00 .00000E+00 .00000E+00 .20000E+00 .35000E-01
@ MON. TOWER*4MW* FLGPOL DFAULT	METEOROLOGICAL DAYS SELECTED (1=YES; 0=NO)		SSED WILL ALSO	FIRST THROUGH FIFTH (METERS/SEC)	3.09, 5.14,	*** WIND PROFILE EXPONENTS	WIND SPEED CATEGORY 3 1 .70000E-01 1 .70000E-01 0 .15000E+00 0 .35000E+00 0 .55000E+00	*** VERTICAL POTENTIAL TEMPERATURE GRADIENTS *** (DEGREES KELVIN PER METER)	SPEED CATEGORY 3 .00000E+00 .00000E+00 .00000E+00 .20000E+00 .35000E-01
& 10 STACKS @ RURAL ELEV	*** METEOROLO		ACTUALLY PROCE	UPPER BOUND OF FIRS	1.54,	IM ***	2 .70000E-01 .70000E-01 .10000E+00 .15000E+00 .35000E+00	*** VERTICAL POT	MIND 2 .00000E+00 .00000E+00 .00000E+00 .00000E+01 .35000E-01
53 *** *** CT ***			METEOROLOGICAL DATA	*** UPPE			1 .70000E-01 .70000E-01 .10000E+00 .35000E+00	r	1 .00000E+00 .00000E+00 .00000E+00 .20000E-01 .35000E-01
*** ISCST3 - VERSION 97363 **MODELOPTs: CONC		11111111111111111111111111111111111111	NOTE: METE				STABILITY CATEGORY A B C C D E		STABILITY CATEGORY A B C C C D E

*** ISCST3 - VERSION 97363 *** *** CT & 10 STACKS & MON. TOWER*4MW*1991 JUL-SEP WB MODELLOFTS: CONC *** THE FIRST 24 HOURS OF METEOROLOGICAL DATA *** FILE: ORNAB.ASC SURFACE STATION NO.: 13891 NAME: ORNAI: NATN VEAR: 1991 FLOW SPEED TEMP STAB MIXING HEIGHT (M) USTAR M-O LENGTH Z-O IPCODE MN DY HR VECTOR (M/S) (K) CLASS RUBAL URBAN (H/S) (M) 1 1 2 52.1 2.30 303.1 2 226.3 2284.9 0.0000 0.0 0.0000 0 1 1 2 52.1 2.30 303.2 3 2286.4 2223.4 0.0000 0.0 0.0000 0 1 1 1 2 52.1 2.30 303.3 3 2408.0 2408.0 0.0000 0.0 0.0000 0 1 1 1 2 12.6 2.5 2.7 2.8 226.9 2284.9 0.0000 0.0 0.0000 0 1 1 1 2 1 2 52.1 2.30 303.2 3 2286.4 2223.4 0.0000 0.0 0.0000 0 1 1 1 2 1 2 52.1 2.30 303.2 3 2286.4 2223.4 0.0000 0.0 0.0000 0 1 1 2 52.1 2.30 303.3 4 2408.0 2408.0 0.0000 0.0 0.0000 0 1 1 1 2 1 2 2.7 2.8 20.8 20.8 2 2408.0 2408.0 0.0000 0.0 0.0000 0 1 1 1 2 1 2 2.7 2 23.8 208.1 3 2408.0 2408.0 0.0000 0.0 0.0000 0 1 1 1 2 1 2 2.7 2 23.8 30.8 4 2408.0 2408.0 0.0000 0.0 0.0000 0 1 1 1 2 1 2 2.7 2 23.8 30.8 4 2408.0 2408.0 0.0000 0.0 0.0 0.0000 0 1 1 1 2 1 2 2.7 2 2408.0 2408.0 0.0000 0.0 0.0 0.0000 0 1 1 1 1 2 1 2.5 2.7 2 20.8 30.8 4 2408.0 2408.0 0.0000 0.0 0.0 0.0000 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*** 06/15/98 *** 19:41:09 PAGE 9		J.1,f8.4,i4,f7.2)	PE (R)	
*** ISCST3 - VERSION 97363 *** *** THE FIRST CONC *** THE FIRST CONC SURFACE STATION NO.: 13891 *** THE FIRST CANS MAKE. ORTN NAME: ORTN *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB NAME: ORTN *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB NAME: ORTN *** THE FIRST CANS MICHAL *** THE FIRST CANS MICHAL NAME: ORTN *** THE FIRST CANS MICHAL *** THE FIRST			9.4, £1	OE PRATE (mm/HR)	
*** ISCST3 - VERSION 97363 *** *** THE FIRST CONC *** THE FIRST CONC SURFACE STATION NO.: 13891 *** THE FIRST CANS MAKE. ORTN NAME: ORTN *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB NAME: ORTN *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB NAME: ORTN *** THE FIRST CANS MICHAL *** THE FIRST CANS MICHAL NAME: ORTN *** THE FIRST CANS MICHAL *** THE FIRST			.1, f9	IPCOL	
*** ISCST3 - VERSION 97363 *** *** THE FIRST ST RURAL ELEV *** THE FIRST 24 HOURS OF METE NAME: ORTN NAME: ORTN *** THE FIRST 24 HOURS OF METE *** THE FIRST 24 HOURS OF ALONG OF ALONG OF METE *** THE FIRST 24 HOURS OF ALONG OF ALONG OF METE *** THE FIRST 24 HOURS OF ALONG OF ALONG OF METE *** THE FIRST 24 HOURS OF ALONG			, I2, 2F7 13897 NATN 1991	(W) 0-Z	
*** ISCST3 - VERSION 97363 *** *** THE FIRST CONC *** THE FIRST CONC SURFACE STATION NO.: 13891 *** THE FIRST CANS MAKE. ORTN NAME: ORTN *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB NAME: ORTN *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB *** THE FIRST CANS MICHAL URB NAME: ORTN *** THE FIRST CANS MICHAL *** THE FIRST CANS MICHAL NAME: ORTN *** THE FIRST CANS MICHAL *** THE FIRST	:::4MW*1991	-	2F9.4,F6.1 (TION NO.: NAME: I	M-O LENGTH (M)	
*** ISCST3 - VERSION 97363 *** *** THE FIRST 24 HOURS OF METE NAME: ORTN *** THE FIRST 24 HOURS OF METE *** THE FIRST 24	MON. TOWE	FLGPOL DFP	AAT: (412, ER AIR STA	USTAR (M/S)	0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0
** ISCST3 - VERSION 97363 *** *** MODELOPTS: CONC *** THE FIRST 24 *** THE FIRST	STACKS @	ELEV METEORO	FORN	HEIGHT (M) URBAN	2161.9 2223.4 2223.4 2346.5 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0
** ISCST3 - VERSION 97363 *** *** MODELOPTS: CONC SURFACE STATION NO.: 13891 NAME: ORTN YEAR: 1991 FLOW SPEED TEMP STAB NAME: ORTN YEAR: 1991 1 1 2 52.1 2.30 303.2 3 1 1 3 97.4 3.72 302.8 2 1 1 4 119.5 3.90 300.0 3 1 1 5 104.3 3.39 298.1 3 1 1 7 108.5 2.71 297.2 3 1 1 8 120.6 2.75 297.3 4 1 1 9 134.4 2.15 298.5 4 1 1 1 9 130.0 1.24 302.7 2 1 1 1 9 134.4 2.15 298.5 4 1 1 1 9 130.0 1.24 302.7 2 1 1 1 9 13.0 0.0 301.9 2 1 1 1 1 10.0 99.4 1.20 300.6 1 1 1 1 1 10.0 99.4 1.20 300.6 1 1 1 1 1 10.0 99.4 1.20 300.6 1 1 1 1 1 10.0 99.4 1.20 300.7 2 1 1 1 1 10.0 99.4 1.20 300.6 1 1 1 1 2 133.5 0.00 301.9 3 1 1 1 3 98.5 1.38 303.1 4 1 1 1 2 2 113.0 1.88 301.4 3 1 1 1 2 120.1 44.0 1.88 301.4 3 1 1 2 120.1 44.0 1.88 301.4 3 1 1 2 120.1 44.0 1.88 301.4 3 1 1 2 120.1 48.5 5.35 293.9 4	CT &	RURAL HOURS OF		MIXING H RURAL	2125.8 2196.4 2266.9 2337.4 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0 2408.0
** ISCST3 - VERSION 97363 *** MODELOPTS: CONC FILE: ORNAB.ASC SURFACE STATION NO.: 13891 NAME: ORTN YEAR: 1991 FLOW SPEED TEMP MN DY HR VECTOR (M/S) (K) 1 1 2 52.1 2.30 303.2 1 1 3 97.4 3.72 302.8 1 1 4 119.5 3.90 300.0 1 1 5 104.3 3.39 298.1 1 1 6 122.6 2.71 297.2 1 1 1 1 10 99.4 1.20 300.6 1 1 1 0 99.4 1.20 300.6 1 1 1 1 106.0 1.38 301.9 1 1 1 2 113.0 1.24 302.7 1 1 13 98.5 1.38 303.1 1 1 1 1 10 99.4 1.20 300.6 1 1 1 1 10 99.4 1.20 300.6 1 1 1 1 10 99.4 1.20 300.6 1 1 1 1 10 99.4 1.20 300.6 1 1 1 1 10 99.4 1.20 300.6 1 1 1 1 10 99.4 1.20 300.6 1 1 12 113.0 1.24 302.7 1 1 19 250.0 0.00 301.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * *	2		STAB CLASS 	0
** ISCST3 - VERSION 9736 MODELOPTS: CONC FILE: ORNAB.ASC SURFACE STATION NO.: NAME: YEAR: FLOW SPEED MN DY HR VECTOR (M/S) 1 1 2 52.1 2.30 1 1 3 97.4 3.72 1 1 2 52.1 2.30 1 1 3 97.4 3.72 1 1 1 2 52.1 2.30 1 1 3 97.4 3.72 1 1 1 2 52.1 2.30 1 1 3 97.4 3.72 1 1 1 2 52.1 2.30 1 1 3 97.4 3.72 1 1 1 3 97.4 3.72 1 1 1 3 97.4 3.72 1 1 1 3 97.4 3.72 1 1 1 3 97.4 3.72 1 1 1 1 106.0 1.38 1 1 1 0 99.4 1.20 1 1 1 1 106.0 1.38 1 1 1 1 106.0 1.38 1 1 1 1 106.0 1.38 1 1 1 1 1 106.0 1.38 1 1 1 1 1 106.0 1.38 1 1 1 1 1 106.0 1.38 1 1 1 1 1 106.0 1.38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			13891 ORTN 1991	TEMP (K)	303.1 303.2 303.2 302.8 300.0 2298.1 2297.2 2297.2 2307.2 3308.1
** ISCST3 MODELOPTS: C MODELOPTS: C FILE: ORN SURFACE S SURFACE S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			NO.: NAME: YEAR:	SPEED (M/S)	1.82 3.72 3.39 3.39 3.39 3.39 2.71 2.71 2.71 1.20 1.38 1.13 1.13 1.13 1.13 1.13 1.13 1.13
** ISCST3 MODELOPTS FILE: SURFAC NN DY HR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		RNA8.ASC STATIO		32.0 97.4 97.4 119.5 119.5 104.3 108.5 108.5 108.5 113.0 98.5 113.0 113.0 113.0 113.0 113.0 114.0 114.0 114.0
* W X I THEFT THE THE THE THEFT THE THEFT THE THEFT THE THEFT THE THEFT THE THEFT THE THE THE THE THE THE THE THE THE TH	(SCST3	SLOPTs:	ILE: C	HR .	
	* * *	*MODE	EL (I)	WN 1	

*** NOTES: STABILITY CLASS 1=A, 2=B, 3=C, 4=D, 5=E AND 6=F. FLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS BLOWING.

*	ISCST3 - VERSION	97363 ***	*** CT & 1	10 STACKS @ MON		TOWER*4MW*1991	JUL-SEP	WB MET	* * *	1:	
*MO	**MODELOPTs: CONC		RURAL	ELEV	FLGPOL DFAULT	ULT				PAGE 10	0
		*	*** THE MAXIMUM INCLUDING S	50 1 OURCE(S):	AVERAG CT1	E CONCE	-HR AVERAGE CONCENTRATION VA. CT1 ,	VALUES FOR SOURCE	GROUP: CI	* *	
			** CONC	C OF OTHER	IN MIC	IN MICROGRAMS/M**3	/M**3		*		
RANK	CONC	(YYMMDDHH) AT	RECEPTOR	(XR, YR) OF	TYPE	24	CONC	(YYMMDDHH) AT	RECEPTOR	(XR, YR) OF	TYPE
1.	44000 (37500 (91052301) AT 91071318) AT	(744522.0	3982825.00)	י מ כ	 26. 27	408944.15600	١	744522.00,	3982825.00)	1 DG
3.	_		(744522.00,		2 2	28.	407477.68800	(91071319) AT	744522.00,	3982825.00)	ပ္က ပ
4.		_	744522.00,	3982825.	DC DC	29.	406411.00000		744522.00,	3982825.00)	3 2
ח ע	/15342.68800 (910 661015 50000 (910	91032316) AT	(744522.00,	3982825	2 2	30.		_	744522.00,	3982825.00)	20
			(744522.00,	3982825.00)	2 2	31.	403909.93800	_	744522.00,	3982825.00)	DC
80	_		(744522.00.		3 2	33.	39889 31300	(91051419) AT	744522.00,	3982825.00)	2
6	_		(744522.00,		2 2	34.	390928.28100		744522.00,	3982825.00)	ည္က
10.	_	_	(744522.00,		DC	35.	387549.31300		744522.00,	3982825.00)	3 2
11.		_	(744522.00,		2	36.	384416.31300	(91120224) AT	744522.00,	3982825.00)	2 2
12.	_ \		(744522.00,		<u>ک</u>	37.	376056.21900	_	744522.00,	3982825.00)	<u> </u>
13.	484229./8IUU (9IU		(744522.00,		2	38.	374980.28100	_	744522.00,	3982825.00)	2
14.		91051012) AT	(/44522.00,	3982825.00)	ည္က	39.	374238.78100	_	744522.00,	3982825.00)	20
15.			(/44522.00,		2	40.	370532.78100	_	744522.00,	3982825.00)	2
17.	- \		(744522.00,		<u>ප</u>	41.	368265.96900	_	744522.00,	3982825.00)	20
. 8		91042012) AT	(/44522.00,	3982825.00)	2 2	42.	367364.46900	_	744522.00,	_	20
19.		91070504) AT		3992925.00)	2 2	. 4 . 4	359/81.78100		744522.00,	_	20
20.			744522 00,		3 2	44.	352/43.71900		744522.00,	_	2
21.			(744522.00,		3 2	. 4	349772 53100	(91011914) AT (744522.00,		2 2
22.	414508.93800 (910	91012304) AT			2 2		344577 96000		744555 00,		o D
23.	_		(744522.00,		3 2	4 4	343476 03100	(91122005) AT (744522.00,		ည္က
24.	411230.18800 (910	910815091 AT) (,44322.00,	_	S
25.	_		u co	3982825.00)	3 2	50.	33/569.43800 334396.34400	(91052401) AT (744522.00, 744522.00,	3982825.00) 3982825.00)	2 2
* * *	RECEPTOR TYPES: G	GC = GRIDCART	RT								
	9 6	II .	LR								
	ם ב	DC = DISCCART DP = DISCPOLE	RT T.R								
	1 11	1 11	RY								

*** ISCST3 - VERSI	- VERSION 97363 ***	*** CT & 10	STACKS @ MON.	. TOWER*4MW*1991	1991 JUL-SEP WB MET	B MET	* * * * * *	06/15/98 19:41:09 PAGE 11	
**MODELOPTs: CONC		RURAL	ELEV	FLGPOL DFAULT					
88C ,	*** S9C , S10C	THE INCL	50 1-HR OURCE(S):	AVERAGE CONCENTRATION S1C , S2C , S	30	VALUES FOR SOURC	SOURCE GROUP: CO2 , S5C , S6C	***	
		** CONC	OF OTHER	IN MICROGRAMS/M**3	S/M**3		* *		
ANK CONC	(YYMMDDHH) AT	RECEPTO	RECEPTOR (XR, YR) OF	TYPE RANK	CONC	(YYMMDDHH) AT	RECEPTOR	(XR, YR) OF	TYPE
1. 23410.70120	(91071812)	.00	825.00)	DC 26.	7071.	(9106240	(744522.	' 6 6	20 2
		4	3982825.00)		16965.68750	(91020413)	· - –	3982825.00)	
	_	4	3982825.00)	DC 29.	16848.01560	_	_		DC
	_	4	3982825.00)		16829.27340	(91112409)	744	(00	20
6. 20030.30660	(91040123) AT (744522.00,	3982825.00)	DC 31.	16754.21090	(91082516) AT	(744522.00,	3982825.00) I	<u></u>
. 19677		. 4	3982825.00)		16623.85740	(91012001)			3 2
	_	4	3982825.00)	DC 34.	16616.91020	(91123123)			2
	(91082621) AT (4	3982825.00)		16578.47850	_	(744522.00,		20
. 19457	(91090713) AT (4	3982825.00)		16355.34860	_	(744522.00,	3982825.00)	2
12. 19398.85160			3982825.00)		16330.78220		(744522.00,		ပ္က
18869.		₹ 4	3982825.00)		16329.21580	(91050711) AT		3982825.00) 1	200
	(91032315) AT (744522.00,	3982825.00)	DC 39.	16133.59860	(91120405) AT	(744522.00,		3 2
15. 18337.98050 16. 18333.78710		* 4	3982825.00)		15932.03130				3 일
		4	3982825.00)		15881.87790	_	_	_	DC
		4	3982825.00)	4	15826.50290	_	_	_	<u>ک</u>
19. 17843.57420	(91040321) AT (4	3982825.00)	4	15798.71290	(91062103) AT	_	_	20
		4	3982825.00)	DC 45.	15557.46880	_	(744522.	_	20
		4	3982825.00)		15491.74800	_	(744522.	_	20
		4	3982825.00)	4	15443.38180	_	(744522.	2.00)	ည
. 17472.		44	3982825.00)	4		_	(744522.00,	5.00)	ည
. 17386.5449	_	4522.	δ.	DC 49.	323.	_	(744522.	5.00)	2
25. 17223.24020	(91121006) AT (744522.00,	3982825.00)	DC 50.	14943.97560	(91101006) AT	(744522.00,	3982825.00) I	ည
*** RECEPTOR TYPES	: GC = GRIDCART	·							
	GP = GRIDPOLR	α.							
	11	H							
	DP = DISCPOLR BD = BOUNDARY	& >-							

*** ISCST3 - VERSION 97363 ***	* * * *	06/15/98 19:41:09
**MODELOPTS: CONC RURAL ELEV FLGPOL DFAULT		PAGE 12
*** Message Summary : ISCST3 Model Execution ***		
Summary of Total Messages		
A Total of 0 Fatal Error Message(s) A Total of 1 Warning Message(s) A Total of 666 Informational Message(s)		
A Total of 666 Calm Hours Identified		
****** FATAL ERROR MESSAGES ******* *** NONE ***		
******* WARNING MESSAGES ******* CO W205 9 FLAGDF:No Option Parameter Setting. Forced by Default to ZFLAG=0.		

DOE	/EIS-	0247
	SNS	FFIS

This page intentionally left blank.